اولین فرود انسان روی ماه چگونه از تلویزیون به طور زنده پخش شد؟
فرود آپولو 11 روی ماه در سال 1969 و به ویژه قدم گذاشتن نیل آرمسترانگ روی قمر زمین رویداد تلویزیونی قرن بیستم را رقم زد. دِیک اسلایتون، اولین رئیس دفترفضانوردان ناساراهیطولانیراپیمود تا ناسا را متقاعد کند که یک آنتن قابل تنظیم را برای ماه نشین آپولو در نظر بگیرد. هدف از نصب آنتن این بود که آرمسترانگ و باز آلدرین، پیش از رفتن به سطح ماه منتظررسیدن ایستگاه ردیاب به محدوده دیدنباشندتاپخش زنده تسهیل شود. پخش زنده این رویداد اماریشه در توسعه فناوری ها و شاهکارهای مهندسی داشت که توسط ناسا از یک دهه قبل کلید زده شده بود.
ارتباط با اعماق فضا: در هر مأموریت یک فضاپیما اطلاعات متعددی بین آن و ایستگاه پشتیبانی زمینی رد و بدل می شود. این اطلاعات شامل مواردی از قبیل مسافت سنجی، آپلود اطلاعات مورد نیاز برای کامپیوتر و ارتباطات صوتی است. البته لیست اطلاعات تبادل شده بسیار فراتر از این ها است. در اوایل سال 1962 ناسا دریافت که مأموریت های آپولو نیاز به یک سیستم ارتباطی منحصر به فرد دارد. ارتباط صوتی دو طرفه، آپلود داده ها و دانلود اطلاعات مسیریابی با استفاده از سیستم های UHF و VHF انجام می شدند. از سوی دیگر ردیابی با استفاده از باند C و با شنود توسط رادار زمینی انجام می شد.
نیل آرمسترانگ در حال تمرین روی زمین: این روش در مأموریت های ساده تر جواب می داد اما آپولو قرار بود به مکانی بسیار دورتر از مدار زمین سفر کند. علاوه بر این این بار سه انسان (باز آلدرین، نیل آرمسترانگ و مایکل کالینز) در دو سفینه حضور داشتند و باید تصاویر تلویزیونی زنده آنها به زمین ارسال می شد. به این ترتیب برای این سیستم متفاوت، ناسا نیاز به روش جدیدی برای ارسال و دریافت داده های بیشتری داشت.راه حل در باند S یکپارچه (Unified S-band) بود که به اختصار USB خوانده می شد.با این راهکار داده های صوتی، تصویری، ردیابی، فاصله یابی و دستورات در یک آنتن واحد ترکیب می شد. داده های صوتی و نیز زیستی روی زیر حامل FM با فرکانس 1.25 مگاهرتز ارسال می شد. برای مسیریابی، فرکانس زیر حامل دو فاز مدولاسیون شده 1.024 مگاهرتز در نظر گرفته شد. مأموریت آپولو برای فرود به ماه شامل یک ماژول فرماندهی و خدمات بود که در نهایت برای فرود، ماژول ماه نشین از آن جدا می شد و به سمت ماه می رفت و باز می گشت. دو فضاپیما اما در فرکانس های دیگری با هم ارتباط بر قرار می کردند. برای فضاپیمای فرماندهی فرکانس 2287.5 مگاهرتز و برای ماه نشین هم فرکانس 2282.5 مگاهرتز در نظر گرفته شده بود. به طور خلاصه هر نوع داده ای که بین زمین و فضاپیمای ماه نشین تبادل می شد مستقل بود؛ البته به استثناء داده های مرتبط با پخش زنده تلویزیونی. جای پای آلدرین روی ماه:برای اینکه فضای فرکانس ارتباطی مورد نیاز جهت ارسال تصاویر تلویزیونی از ماژول ماه نشین آزاد شود، ناسا از مدولاسیون بهره برد. به طور خلاصه، مدولاسیون فرایند گنجاندن سیگنال حاوی اطلاعات در سیگنالی دیگر است. هدف از این کار افزایش برد سیگنال و بهره وری انتقال و استفاده بهتر از پهنای باند کانال است. درمدولاسیون،یکی ازمشخصههای سیگنال حامل مثلاًدامنه،فرکانس،فاز،یاترکیبی ازاینها) باتوجهبهسیگنالپیامتغییردادهمیشوند.با این راهکار 700 کیلوهرتز از پهنای باند آزاد شد تا در اختیار ارسال تصاویر تلویزیونی با استفاده از باند S یکپارچه قرار گیرد. اما باز هم مشکل دیگری پیش رو بود. این میزان پهنای باند هم برای ارسال فیلم دوربین های استاندارد کافی نبود. دوربین های استاندارد آن زمان ویدیوها را با 525 خط اسکن و نرخ 30 فریم در ثانیه ثبت می کردند. به عبارتی هر فریم تصویر از 525 خط افقی تشکیل شده بود. تمامی این ها به معنی نیاز به 5 مگاهرتز پهنای باند بود؛ چند برابر بیش از آن چیزی که امکان ارسال آن از ماه وجود داشت.اما ناسا برای این مورد هم راه حلی یافت. ناسا نیاز به دوربینی داشت که تعداد اسکن ها و نیز نرخ فریم در آن کمتر باشد. محصولی که باید تولید می شد شامل 320 خط اسکن بود و تعداد فریم های ثبت شده توسط آن هم به 10 کاهش یافته بود. در نتیجه برای ارسال تصاویر ثبت شده با این فرمت تنها نیاز به پهنای باند 500 کیلوهرتز بود.هنگامی که دستورالعمل های تولید دوربین مشخص شد، ناسا دو قرارداد را با شرکت های RCA و بخشهوا-فضایوستینگهاوسالکتریکمنعقد کرد. RCA قرار بود دوربین مورد استفاده در ماژول فرماندهی را تولید کند و وستینگ هاوس هم نمونه مربوط به ماژول ماه نشین را بسازد.
از ماه به اتاق نشمین خانه ها: وستینگ هاوس طراحی دوربین با اسکن پایین تر از معمول مرتبط با ماژول ماه نشین را به «استنلی لِبِر»، مدیر برنامه دوربین ماهواره تلویزیونی سپرد. دوربین طراحی شده باید در عین سبک بودن در مقابل فشارهای حین پرتاب فضاپیما از زمین و شرایط بی وزنی پس از آن مقاومت می کرد. علاوه بر این تحمل نوسان های شدید دما در فضا هم باید در نظر گرفته می شد.استنلی لبر و دوربین های آپولو. دوربین سمت راست تصاویر رنگی را از ماژول فرماندهی ارسال می کرد و دوربین سمت چپ ویدیوی زنده قدم گذاشتن نیل آرمسترانگ بر سطح ماه را ثبت کرد.
دوربین همچنین باید به گونه ای طراحی می شد که در دست گرفتن آن با دستکش های بزرگ فضانوردان هم ممکن و البته راحت بود. بدیهیبودکهانتظارمیرفتتصاویرشفافیرادرمحیطباکنتراستبالاکهشاملسطحروشنماهوآسمانتاریکبودثبتکند.وستینگ هاوس اما برای همه این چالش ها پاسخی یافت: یک لوله تصویر تلویزیونی با نور کم که وزارت دفاع ایالات متحده از آن برای عملیات نظارتی در جنگل های ویتنام بهره می برد. با استفاده از این دوربین حتی می شد در شب یک خلبان سقوط کرده را پیدا کرد. این دوربین به لطف بخشی به نام SEC امکان بازتولید تصویر اشیاء متحرک در نور کم را داشت.در نهایت محصول تولید شده توسط وستینگ هاوس همان دوربینی شد که اولین قدم نیل آرمسترانگ روی سطح ماه را ثبت کرد. دوربین در یک محفظه خارجی نصب شده بود. وقتی که آرمسترانگ روی لبه ماه نشین آمد، تسمه ای را کشید تا این بخش باز شود. اگر چه این بخش با یک روکش حرارتی پوشانده شده بود اما لنز دوربین از طریق یک سوراخ قادر به ثبت همه اتفاقات بود.باز آلدرین از داخل کابین با یک فعال کردن یک قطع کننده مدار، دوربین را روشن کرد تا لحظه پایین آمدن آرمسترانگ از نردبان و اولین قدم بر سطح ماه ثبت شود. سیگنال های ویدیو از طریق آنتن ماژول ماه نشین به ایستگاه ردیابی در هانیساکِل کریک در گلدستون در نزدیکی کانبرای استرالیا و نیز رصدخانه پارکس در استرالیا فرستاده شد. ناسا از یک مبدل اسکن استفاده کرد تا تصاویر را برای پخش با سیستم اسکن 525 خطی و 30 فریم بر ثانیه بهینه کند.
اندکی قبل از لحظه به یاد ماندنی قدم گذاشتن نیل آرمسترانگ روی ماه: در نهایت ایستگاه ردیاب، سیگنال های مایکرو وِیو ویدیو را به ماهواره اینتل ست فرستاد و در آن سوی دنیا این سیگنال ها از طریق خطوط زمینی شرکت ارتباط راه دور AT&T به مقر کنترل مأموریت در هیوستون تگزاس فرستاده شدند. از این جا بود که ویدیوی فرود برای سراسر دنیا مخابره شد تا بزرگترین رویداد تلویزیونی قرن بیستم را رقم بزند. فرایند تبدیل تصویر مقدار زیادی از کیفیت ویدیو را کاهش داد اما در نهایت پخش زنده اولین قدم انسان روی ماه در سطح جهانی ممکن شد.
منبع:
POPULAR SCIENCE